Qualitative understanding of partition preferences

- Introduction
- Cavity model
- **▼** Rules for partitioning ...
- ↓ ...of a given compound
- ↓ Recall information ...

- ↓ Case Ic
- ↓ Case IIa
- ↓ Case IIb
- ↓ Other cases
- ↓ Overview
- ↓ Furter information
- ↓ ...of various compounds
- **↓** Page 1/5
- . Page 2/5

- ↓ Page 5/5
- The cavity model in quantitative terms
- Selftest
- Problems
- ▶ Intermolecular interactions in every day life
- FAQ

Case Ic

Rule 1(c):

A *bipolar solute* will partition similarly (i.e. partition coefficients vary by less than a factor 3) to *all apolar phases* because only vdW interactions are involved in the cavity formation as well as in the interactions between solute and solvent.

compound /	solvent	K solvent / air	
ethanol /	decane	38	
ethanol /	CCI ₄	115	bipolar molecules in apolar phases:
ethanol /	cyclohexane	45	
water /	heptane	4.47	only van-der Waals
water /	1,2,4-trichloroben	zene 12.5	Interactions
water /	tetracloroethylene	6.67	

