## Qualitative understanding of partition preferences

- Introduction
- Cavity model
- A simple model for bulk phase partitioning
- The cavity approach
- The interaction energies
- l 🏮 Polarity
- ↓ Exercise
- Rules for partitioning
- The cavity model in quantitative terms
- Selftest
- Problems
- Intermolecular interactions in every day life
- FAQ

## Polarity

From the above information on intermolecular interactions it follows that a simple distinction between *non-polar* and *polar* molecules is not sufficient. Instead we must distinguish between molecules that are **apolar** (i.e. neither H–bond donor nor H–bond acceptor), **monopolar** (either H–bond donor **or** H–bond acceptor), or **bipolar** (both H–bond donor **and** H–bond acceptor). A classification of a compound can usually already be done when its structural formula is known, for example:

- All compounds that contain an H-atom in form of a -OH or -NH group are H-bond donors.
- Compounds containing oxygen or nitrogen are strong H-bond acceptors.
- Compounds with pi-electrons are weak H-bond acceptors.

**Table:** Examples for the different abilities of organic compounds to interact by **van der Waals** and **H-bond** interactions.

| apolar compounds                                            | monopolar compounds                                                                    |                                                      | bipolar comp. <sup>1</sup>                                       |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------|
| only van der Waals<br>interactions                          | van der Waals +<br>H-bond acceptor<br>(e-donor)                                        | van der Waals +<br>H-bond donor<br>(e-acceptor)      | van der Waals +<br>H-bond donor +<br>H-bond acceptor             |
| alkanes<br>chlorobenzenes <sup>2</sup><br>PCBs <sup>2</sup> | alkenes, alkynes,<br>alkylaromatic compounds,<br>ethers, ketones,<br>esters, aldehydes | CHCI <sub>3</sub><br>CH <sub>2</sub> CI <sub>2</sub> | R – NH <sub>2</sub><br>R <sub>2</sub> – NH<br>R – COOH<br>R – OH |

<sup>1</sup> Intramolecular H-bonds like in 2-nitrophenol strongly reduce the ability of the compound to form H–bonds with neighboring molecules.

<sup>2</sup> Compounds whose pi-electron density is diminished by electron withdrawing substituents are apolar.

Download this page as a pdf

