Quantitative equilibrium calculations

Fundamentals

- Problems
- ↓ Fraction of atrazine
- ↓ <u>Help</u>
- ↓ <u>Answer</u>
- ↓ Retardation factor
- ↓ <u>Answer</u>
- ↓ Raining out
- ↓ <u>Answer</u>
- ↓ <u>Carpet</u>
- ↓ <u>Help</u>
- ↓ <u>Answer</u>
- ↓ Sorption kinetics
- ↓ <u>Help</u>
- ↓ <u>Answer</u>
- ↓ Organic pollutants in water
- ↓ <u>Answer</u>
- Fish toxicity test
- ↓ <u>Answer</u>
- ↓ Ethylacetate
- ↓ <u>Answer</u>
- ↓ <u>Tetrachlorobenzene</u>
- ↓ <u>Answer</u>
- ↓ <u>Hexachlorobenzene</u>
- ↓ 🧕 Answer
- Chlorobenzene
- ↓ <u>Answer</u>
- ↓ <u>Toxicity test</u>
- ↓ <u>Answer</u>
- ↓ <u>Toxicity test improving.</u>
- O
 <u>3 phases problem
 </u>
- ↓ <u>Answer</u>
- Sorption experiment
- ↓ ● <u>Answer</u>
- ↓ <u>HCH</u>

Hexachlorobenzene

A concentration of 100 μ g hexachlorobenzene (HCB) per kg wet weight has been measured in fish that live and in the sediment/water interface. The average fat content of the fish is about 5 % (i.e. 0.05 kg lipid per kg wet weight). The aqueous concentration of HCB in water was determined to be 0.1 ng L⁻¹, in the sediment (f_{oc} = 0.05 kg_{oc}kg⁻¹ in dry sediment) a concentration of 2 μ g kg⁻¹ sediment (dry) was analysed.

Estimate (roughly) which concentration one would expect in the fish (in µg per kg wet weight) if they were in equilibrium with

- a) the water phase or
- b) the sediment phase.

What assumptions do you make?

Use the following partition constants:

 $\log K_{lipid/water} = 5.8 (L_{water}/L_{lipid})$

 $\log K_{oc/water} = 5.3 (L_{water}/kg_{oc})$

Answer:

a) 100 μ g per kg wet weight correspond to 2.10⁶ ng per kg lipid. In equilibrium with water one would expect 6.3.10⁴ ng/kg_{lipid} if HCB only partitions into fish lipids.

On basis of the total wet weight of the fish one would expect a concentration of 3.15 μ g/kg_{wet weight} instead of the 100 μ g/kg_{wet weight} that have been measured.

b) The
$$K_{oc}$$
 is $2 \cdot 10^5 L_{water}/kg_{oc}$. The sediment/water partition constant thus is $1 \cdot 10^4 L_{water}/kg_{sediment}$

- Excercises for an improved intuitive understanding
- Questions for recapitulation
- Good to know
- Minesweeper-problems

because only 5% of the sediment is organic carbon. The equilibrium concentration in the pore water then was about $2 \cdot 10^{-4} \ \mu g \ /L_{water}$ oder 0.2 ng/L_{water} based on the measured 2 $\ \mu g \ kg^{-1}$ in wet sediment. In equilibrium with the sediment one would expect $1.26 \cdot 10^5 \ ng/kg_{lipid}$ if HCB only partitions into the fish lipids.

Conclusion: The fish cannot have been contaminated from either the water or the sediment phase. Most likely they have been contaminated via the food chain and the up-take kinetics with the food are so much faster than the clearance kinetic via the water phase that no equilibrium with water is achieved.

